Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfopg | |- ( ( A e. V /\ B e. W ) -> <. A , B >. = { { A } , { A , B } } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elex | |- ( A e. V -> A e. _V ) |
|
2 | elex | |- ( B e. W -> B e. _V ) |
|
3 | dfopif | |- <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) |
|
4 | iftrue | |- ( ( A e. _V /\ B e. _V ) -> if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) = { { A } , { A , B } } ) |
|
5 | 3 4 | eqtrid | |- ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } ) |
6 | 1 2 5 | syl2an | |- ( ( A e. V /\ B e. W ) -> <. A , B >. = { { A } , { A , B } } ) |