Metamath Proof Explorer


Theorem dfopg

Description: Value of the ordered pair when the arguments are sets. (Contributed by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Assertion dfopg
|- ( ( A e. V /\ B e. W ) -> <. A , B >. = { { A } , { A , B } } )

Proof

Step Hyp Ref Expression
1 elex
 |-  ( A e. V -> A e. _V )
2 elex
 |-  ( B e. W -> B e. _V )
3 dfopif
 |-  <. A , B >. = if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) )
4 iftrue
 |-  ( ( A e. _V /\ B e. _V ) -> if ( ( A e. _V /\ B e. _V ) , { { A } , { A , B } } , (/) ) = { { A } , { A , B } } )
5 3 4 eqtrid
 |-  ( ( A e. _V /\ B e. _V ) -> <. A , B >. = { { A } , { A , B } } )
6 1 2 5 syl2an
 |-  ( ( A e. V /\ B e. W ) -> <. A , B >. = { { A } , { A , B } } )