Step |
Hyp |
Ref |
Expression |
1 |
|
dfoprab3.1 |
|- ( w = <. x , y >. -> ( ph <-> ps ) ) |
2 |
|
dfoprab3s |
|- { <. <. x , y >. , z >. | ps } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) } |
3 |
|
fvex |
|- ( 1st ` w ) e. _V |
4 |
|
fvex |
|- ( 2nd ` w ) e. _V |
5 |
|
eqcom |
|- ( x = ( 1st ` w ) <-> ( 1st ` w ) = x ) |
6 |
|
eqcom |
|- ( y = ( 2nd ` w ) <-> ( 2nd ` w ) = y ) |
7 |
5 6
|
anbi12i |
|- ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) <-> ( ( 1st ` w ) = x /\ ( 2nd ` w ) = y ) ) |
8 |
|
eqopi |
|- ( ( w e. ( _V X. _V ) /\ ( ( 1st ` w ) = x /\ ( 2nd ` w ) = y ) ) -> w = <. x , y >. ) |
9 |
7 8
|
sylan2b |
|- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> w = <. x , y >. ) |
10 |
9 1
|
syl |
|- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( ph <-> ps ) ) |
11 |
10
|
bicomd |
|- ( ( w e. ( _V X. _V ) /\ ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) ) -> ( ps <-> ph ) ) |
12 |
11
|
ex |
|- ( w e. ( _V X. _V ) -> ( ( x = ( 1st ` w ) /\ y = ( 2nd ` w ) ) -> ( ps <-> ph ) ) ) |
13 |
3 4 12
|
sbc2iedv |
|- ( w e. ( _V X. _V ) -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps <-> ph ) ) |
14 |
13
|
pm5.32i |
|- ( ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) <-> ( w e. ( _V X. _V ) /\ ph ) ) |
15 |
14
|
opabbii |
|- { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ps ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ ph ) } |
16 |
2 15
|
eqtr2i |
|- { <. w , z >. | ( w e. ( _V X. _V ) /\ ph ) } = { <. <. x , y >. , z >. | ps } |