| Step |
Hyp |
Ref |
Expression |
| 1 |
|
dfoprab2 |
|- { <. <. x , y >. , z >. | ph } = { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } |
| 2 |
|
nfsbc1v |
|- F/ x [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph |
| 3 |
2
|
19.41 |
|- ( E. x ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. x E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 4 |
|
sbcopeq1a |
|- ( w = <. x , y >. -> ( [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph <-> ph ) ) |
| 5 |
4
|
pm5.32i |
|- ( ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( w = <. x , y >. /\ ph ) ) |
| 6 |
5
|
exbii |
|- ( E. y ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> E. y ( w = <. x , y >. /\ ph ) ) |
| 7 |
|
nfcv |
|- F/_ y ( 1st ` w ) |
| 8 |
|
nfsbc1v |
|- F/ y [. ( 2nd ` w ) / y ]. ph |
| 9 |
7 8
|
nfsbcw |
|- F/ y [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph |
| 10 |
9
|
19.41 |
|- ( E. y ( w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 11 |
6 10
|
bitr3i |
|- ( E. y ( w = <. x , y >. /\ ph ) <-> ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 12 |
11
|
exbii |
|- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> E. x ( E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 13 |
|
elvv |
|- ( w e. ( _V X. _V ) <-> E. x E. y w = <. x , y >. ) |
| 14 |
13
|
anbi1i |
|- ( ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) <-> ( E. x E. y w = <. x , y >. /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 15 |
3 12 14
|
3bitr4i |
|- ( E. x E. y ( w = <. x , y >. /\ ph ) <-> ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) ) |
| 16 |
15
|
opabbii |
|- { <. w , z >. | E. x E. y ( w = <. x , y >. /\ ph ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) } |
| 17 |
1 16
|
eqtri |
|- { <. <. x , y >. , z >. | ph } = { <. w , z >. | ( w e. ( _V X. _V ) /\ [. ( 1st ` w ) / x ]. [. ( 2nd ` w ) / y ]. ph ) } |