Step |
Hyp |
Ref |
Expression |
1 |
|
dfoprab4.1 |
|- ( w = <. x , y >. -> ( ph <-> ps ) ) |
2 |
|
xpss |
|- ( A X. B ) C_ ( _V X. _V ) |
3 |
2
|
sseli |
|- ( w e. ( A X. B ) -> w e. ( _V X. _V ) ) |
4 |
3
|
adantr |
|- ( ( w e. ( A X. B ) /\ ph ) -> w e. ( _V X. _V ) ) |
5 |
4
|
pm4.71ri |
|- ( ( w e. ( A X. B ) /\ ph ) <-> ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) ) |
6 |
5
|
opabbii |
|- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. w , z >. | ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) } |
7 |
|
eleq1 |
|- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> <. x , y >. e. ( A X. B ) ) ) |
8 |
|
opelxp |
|- ( <. x , y >. e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) |
9 |
7 8
|
bitrdi |
|- ( w = <. x , y >. -> ( w e. ( A X. B ) <-> ( x e. A /\ y e. B ) ) ) |
10 |
9 1
|
anbi12d |
|- ( w = <. x , y >. -> ( ( w e. ( A X. B ) /\ ph ) <-> ( ( x e. A /\ y e. B ) /\ ps ) ) ) |
11 |
10
|
dfoprab3 |
|- { <. w , z >. | ( w e. ( _V X. _V ) /\ ( w e. ( A X. B ) /\ ph ) ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |
12 |
6 11
|
eqtri |
|- { <. w , z >. | ( w e. ( A X. B ) /\ ph ) } = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ ps ) } |