Description: Alternate definition of a pair. Definition 5.1 of TakeutiZaring p. 15. (Contributed by NM, 24-Apr-1994)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpr2 | |- { A , B } = { x | ( x = A \/ x = B ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-pr | |- { A , B } = ( { A } u. { B } ) |
|
2 | elun | |- ( x e. ( { A } u. { B } ) <-> ( x e. { A } \/ x e. { B } ) ) |
|
3 | velsn | |- ( x e. { A } <-> x = A ) |
|
4 | velsn | |- ( x e. { B } <-> x = B ) |
|
5 | 3 4 | orbi12i | |- ( ( x e. { A } \/ x e. { B } ) <-> ( x = A \/ x = B ) ) |
6 | 2 5 | bitri | |- ( x e. ( { A } u. { B } ) <-> ( x = A \/ x = B ) ) |
7 | 6 | abbi2i | |- ( { A } u. { B } ) = { x | ( x = A \/ x = B ) } |
8 | 1 7 | eqtri | |- { A , B } = { x | ( x = A \/ x = B ) } |