Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | dfpred2.1 | |- X e. _V |
|
Assertion | dfpred2 | |- Pred ( R , A , X ) = ( A i^i { y | y R X } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpred2.1 | |- X e. _V |
|
2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
3 | iniseg | |- ( X e. _V -> ( `' R " { X } ) = { y | y R X } ) |
|
4 | 1 3 | ax-mp | |- ( `' R " { X } ) = { y | y R X } |
5 | 4 | ineq2i | |- ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } ) |
6 | 2 5 | eqtri | |- Pred ( R , A , X ) = ( A i^i { y | y R X } ) |