Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfpred2.1 | |- X e. _V |
|
| Assertion | dfpred2 | |- Pred ( R , A , X ) = ( A i^i { y | y R X } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfpred2.1 | |- X e. _V |
|
| 2 | df-pred | |- Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) ) |
|
| 3 | iniseg | |- ( X e. _V -> ( `' R " { X } ) = { y | y R X } ) |
|
| 4 | 1 3 | ax-mp | |- ( `' R " { X } ) = { y | y R X } |
| 5 | 4 | ineq2i | |- ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } ) |
| 6 | 2 5 | eqtri | |- Pred ( R , A , X ) = ( A i^i { y | y R X } ) |