Metamath Proof Explorer


Theorem dfpred2

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 8-Feb-2011)

Ref Expression
Hypothesis dfpred2.1
|- X e. _V
Assertion dfpred2
|- Pred ( R , A , X ) = ( A i^i { y | y R X } )

Proof

Step Hyp Ref Expression
1 dfpred2.1
 |-  X e. _V
2 df-pred
 |-  Pred ( R , A , X ) = ( A i^i ( `' R " { X } ) )
3 iniseg
 |-  ( X e. _V -> ( `' R " { X } ) = { y | y R X } )
4 1 3 ax-mp
 |-  ( `' R " { X } ) = { y | y R X }
5 4 ineq2i
 |-  ( A i^i ( `' R " { X } ) ) = ( A i^i { y | y R X } )
6 2 5 eqtri
 |-  Pred ( R , A , X ) = ( A i^i { y | y R X } )