Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | dfpred2.1 | |- X e. _V | |
| Assertion | dfpred3 | |- Pred ( R , A , X ) = { y e. A | y R X } | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfpred2.1 | |- X e. _V | |
| 2 | incom |  |-  ( A i^i { y | y R X } ) = ( { y | y R X } i^i A ) | |
| 3 | 1 | dfpred2 |  |-  Pred ( R , A , X ) = ( A i^i { y | y R X } ) | 
| 4 | dfrab2 |  |-  { y e. A | y R X } = ( { y | y R X } i^i A ) | |
| 5 | 2 3 4 | 3eqtr4i |  |-  Pred ( R , A , X ) = { y e. A | y R X } |