Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpred3g | |- ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | predeq3 | |- ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) ) |
|
2 | breq2 | |- ( x = X -> ( y R x <-> y R X ) ) |
|
3 | 2 | rabbidv | |- ( x = X -> { y e. A | y R x } = { y e. A | y R X } ) |
4 | 1 3 | eqeq12d | |- ( x = X -> ( Pred ( R , A , x ) = { y e. A | y R x } <-> Pred ( R , A , X ) = { y e. A | y R X } ) ) |
5 | vex | |- x e. _V |
|
6 | 5 | dfpred3 | |- Pred ( R , A , x ) = { y e. A | y R x } |
7 | 4 6 | vtoclg | |- ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } ) |