Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfpred3g | |- ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | predeq3 | |- ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) ) | |
| 2 | breq2 | |- ( x = X -> ( y R x <-> y R X ) ) | |
| 3 | 2 | rabbidv |  |-  ( x = X -> { y e. A | y R x } = { y e. A | y R X } ) | 
| 4 | 1 3 | eqeq12d |  |-  ( x = X -> ( Pred ( R , A , x ) = { y e. A | y R x } <-> Pred ( R , A , X ) = { y e. A | y R X } ) ) | 
| 5 | vex | |- x e. _V | |
| 6 | 5 | dfpred3 |  |-  Pred ( R , A , x ) = { y e. A | y R x } | 
| 7 | 4 6 | vtoclg |  |-  ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } ) |