Metamath Proof Explorer


Theorem dfpred3g

Description: An alternate definition of predecessor class when X is a set. (Contributed by Scott Fenton, 13-Jun-2018)

Ref Expression
Assertion dfpred3g
|- ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } )

Proof

Step Hyp Ref Expression
1 predeq3
 |-  ( x = X -> Pred ( R , A , x ) = Pred ( R , A , X ) )
2 breq2
 |-  ( x = X -> ( y R x <-> y R X ) )
3 2 rabbidv
 |-  ( x = X -> { y e. A | y R x } = { y e. A | y R X } )
4 1 3 eqeq12d
 |-  ( x = X -> ( Pred ( R , A , x ) = { y e. A | y R x } <-> Pred ( R , A , X ) = { y e. A | y R X } ) )
5 vex
 |-  x e. _V
6 5 dfpred3
 |-  Pred ( R , A , x ) = { y e. A | y R x }
7 4 6 vtoclg
 |-  ( X e. V -> Pred ( R , A , X ) = { y e. A | y R X } )