Metamath Proof Explorer


Theorem dfprm3

Description: The (positive) prime elements of the integer ring are the prime numbers. (Contributed by Thierry Arnoux, 18-May-2025)

Ref Expression
Assertion dfprm3
|- Prime = ( NN i^i ( RPrime ` ZZring ) )

Proof

Step Hyp Ref Expression
1 eqid
 |-  ( Irred ` ZZring ) = ( Irred ` ZZring )
2 1 dfprm2
 |-  Prime = ( NN i^i ( Irred ` ZZring ) )
3 eqid
 |-  ( RPrime ` ZZring ) = ( RPrime ` ZZring )
4 zringpid
 |-  ZZring e. PID
5 4 a1i
 |-  ( T. -> ZZring e. PID )
6 3 1 5 rprmirredb
 |-  ( T. -> ( Irred ` ZZring ) = ( RPrime ` ZZring ) )
7 6 mptru
 |-  ( Irred ` ZZring ) = ( RPrime ` ZZring )
8 7 ineq2i
 |-  ( NN i^i ( Irred ` ZZring ) ) = ( NN i^i ( RPrime ` ZZring ) )
9 2 8 eqtri
 |-  Prime = ( NN i^i ( RPrime ` ZZring ) )