Description: Alternate definition of proper subclass. (Contributed by NM, 7-Feb-1996) (Proof shortened by Andrew Salmon, 26-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | dfpss3 | |- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfpss2 | |- ( A C. B <-> ( A C_ B /\ -. A = B ) ) |
|
2 | eqss | |- ( A = B <-> ( A C_ B /\ B C_ A ) ) |
|
3 | 2 | baib | |- ( A C_ B -> ( A = B <-> B C_ A ) ) |
4 | 3 | notbid | |- ( A C_ B -> ( -. A = B <-> -. B C_ A ) ) |
5 | 4 | pm5.32i | |- ( ( A C_ B /\ -. A = B ) <-> ( A C_ B /\ -. B C_ A ) ) |
6 | 1 5 | bitri | |- ( A C. B <-> ( A C_ B /\ -. B C_ A ) ) |