Metamath Proof Explorer


Theorem dfrab3

Description: Alternate definition of restricted class abstraction. (Contributed by Mario Carneiro, 8-Sep-2013)

Ref Expression
Assertion dfrab3
|- { x e. A | ph } = ( A i^i { x | ph } )

Proof

Step Hyp Ref Expression
1 df-rab
 |-  { x e. A | ph } = { x | ( x e. A /\ ph ) }
2 inab
 |-  ( { x | x e. A } i^i { x | ph } ) = { x | ( x e. A /\ ph ) }
3 abid2
 |-  { x | x e. A } = A
4 3 ineq1i
 |-  ( { x | x e. A } i^i { x | ph } ) = ( A i^i { x | ph } )
5 1 2 4 3eqtr2i
 |-  { x e. A | ph } = ( A i^i { x | ph } )