Step |
Hyp |
Ref |
Expression |
1 |
|
df-ss |
|- ( A C_ B <-> ( A i^i B ) = A ) |
2 |
|
ineq1 |
|- ( ( A i^i B ) = A -> ( ( A i^i B ) i^i { x | ph } ) = ( A i^i { x | ph } ) ) |
3 |
2
|
eqcomd |
|- ( ( A i^i B ) = A -> ( A i^i { x | ph } ) = ( ( A i^i B ) i^i { x | ph } ) ) |
4 |
1 3
|
sylbi |
|- ( A C_ B -> ( A i^i { x | ph } ) = ( ( A i^i B ) i^i { x | ph } ) ) |
5 |
|
dfrab3 |
|- { x e. A | ph } = ( A i^i { x | ph } ) |
6 |
|
dfrab3 |
|- { x e. B | ph } = ( B i^i { x | ph } ) |
7 |
6
|
ineq2i |
|- ( A i^i { x e. B | ph } ) = ( A i^i ( B i^i { x | ph } ) ) |
8 |
|
inass |
|- ( ( A i^i B ) i^i { x | ph } ) = ( A i^i ( B i^i { x | ph } ) ) |
9 |
7 8
|
eqtr4i |
|- ( A i^i { x e. B | ph } ) = ( ( A i^i B ) i^i { x | ph } ) |
10 |
4 5 9
|
3eqtr4g |
|- ( A C_ B -> { x e. A | ph } = ( A i^i { x e. B | ph } ) ) |