| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-refrel | 
							 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dfrel6 | 
							 |-  ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpi | 
							 |-  ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R )  | 
						
						
							| 4 | 
							
								3
							 | 
							sseq2d | 
							 |-  ( Rel R -> ( ( _I i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) <-> ( _I i^i ( dom R X. ran R ) ) C_ R ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							pm5.32ri | 
							 |-  ( ( ( _I i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )  | 
						
						
							| 6 | 
							
								1 5
							 | 
							bitri | 
							 |-  ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )  |