Description: Alternate definition of the reflexive relation predicate. (Contributed by Peter Mazsa, 12-Dec-2023)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrefrel5 | |- ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrefrel2 | |- ( RefRel R <-> ( ( _I i^i ( dom R X. ran R ) ) C_ R /\ Rel R ) )  | 
						|
| 2 | ref5 | |- ( ( _I i^i ( dom R X. ran R ) ) C_ R <-> A. x e. ( dom R i^i ran R ) x R x )  | 
						|
| 3 | 1 2 | bianbi | |- ( RefRel R <-> ( A. x e. ( dom R i^i ran R ) x R x /\ Rel R ) )  |