Description: Alternate definition of the class of reflexive relations. (Contributed by Peter Mazsa, 8-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrefrels3 | |- RefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x = y -> x r y ) } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfrefrels2 |  |-  RefRels = { r e. Rels | ( _I i^i ( dom r X. ran r ) ) C_ r } | 
						|
| 2 | idinxpss | |- ( ( _I i^i ( dom r X. ran r ) ) C_ r <-> A. x e. dom r A. y e. ran r ( x = y -> x r y ) )  | 
						|
| 3 | 1 2 | rabbieq |  |-  RefRels = { r e. Rels | A. x e. dom r A. y e. ran r ( x = y -> x r y ) } |