Description: Alternate definition of relation. (Contributed by NM, 14-May-2008)
Ref | Expression | ||
---|---|---|---|
Assertion | dfrel3 | |- ( Rel R <-> ( R |` _V ) = R ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
2 | cnvcnv2 | |- `' `' R = ( R |` _V ) |
|
3 | 2 | eqeq1i | |- ( `' `' R = R <-> ( R |` _V ) = R ) |
4 | 1 3 | bitri | |- ( Rel R <-> ( R |` _V ) = R ) |