| Step | Hyp | Ref | Expression | 
						
							| 1 |  | dfrel4.1 |  |-  F/_ x R | 
						
							| 2 |  | dfrel4.2 |  |-  F/_ y R | 
						
							| 3 |  | dfrel4v |  |-  ( Rel R <-> R = { <. a , b >. | a R b } ) | 
						
							| 4 |  | nfcv |  |-  F/_ x a | 
						
							| 5 |  | nfcv |  |-  F/_ x b | 
						
							| 6 | 4 1 5 | nfbr |  |-  F/ x a R b | 
						
							| 7 |  | nfcv |  |-  F/_ y a | 
						
							| 8 |  | nfcv |  |-  F/_ y b | 
						
							| 9 | 7 2 8 | nfbr |  |-  F/ y a R b | 
						
							| 10 |  | nfv |  |-  F/ a x R y | 
						
							| 11 |  | nfv |  |-  F/ b x R y | 
						
							| 12 |  | breq12 |  |-  ( ( a = x /\ b = y ) -> ( a R b <-> x R y ) ) | 
						
							| 13 | 6 9 10 11 12 | cbvopab |  |-  { <. a , b >. | a R b } = { <. x , y >. | x R y } | 
						
							| 14 | 13 | eqeq2i |  |-  ( R = { <. a , b >. | a R b } <-> R = { <. x , y >. | x R y } ) | 
						
							| 15 | 3 14 | bitri |  |-  ( Rel R <-> R = { <. x , y >. | x R y } ) |