Step |
Hyp |
Ref |
Expression |
1 |
|
dfrel4.1 |
|- F/_ x R |
2 |
|
dfrel4.2 |
|- F/_ y R |
3 |
|
dfrel4v |
|- ( Rel R <-> R = { <. a , b >. | a R b } ) |
4 |
|
nfcv |
|- F/_ x a |
5 |
|
nfcv |
|- F/_ x b |
6 |
4 1 5
|
nfbr |
|- F/ x a R b |
7 |
|
nfcv |
|- F/_ y a |
8 |
|
nfcv |
|- F/_ y b |
9 |
7 2 8
|
nfbr |
|- F/ y a R b |
10 |
|
nfv |
|- F/ a x R y |
11 |
|
nfv |
|- F/ b x R y |
12 |
|
breq12 |
|- ( ( a = x /\ b = y ) -> ( a R b <-> x R y ) ) |
13 |
6 9 10 11 12
|
cbvopab |
|- { <. a , b >. | a R b } = { <. x , y >. | x R y } |
14 |
13
|
eqeq2i |
|- ( R = { <. a , b >. | a R b } <-> R = { <. x , y >. | x R y } ) |
15 |
3 14
|
bitri |
|- ( Rel R <-> R = { <. x , y >. | x R y } ) |