Metamath Proof Explorer


Theorem dfrel4v

Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015)

Ref Expression
Assertion dfrel4v
|- ( Rel R <-> R = { <. x , y >. | x R y } )

Proof

Step Hyp Ref Expression
1 dfrel2
 |-  ( Rel R <-> `' `' R = R )
2 eqcom
 |-  ( `' `' R = R <-> R = `' `' R )
3 cnvcnv3
 |-  `' `' R = { <. x , y >. | x R y }
4 3 eqeq2i
 |-  ( R = `' `' R <-> R = { <. x , y >. | x R y } )
5 1 2 4 3bitri
 |-  ( Rel R <-> R = { <. x , y >. | x R y } )