Description: A relation can be expressed as the set of ordered pairs in it. An analogue of dffn5 for relations. (Contributed by Mario Carneiro, 16-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfrel4v | |- ( Rel R <-> R = { <. x , y >. | x R y } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | dfrel2 | |- ( Rel R <-> `' `' R = R ) |
|
| 2 | eqcom | |- ( `' `' R = R <-> R = `' `' R ) |
|
| 3 | cnvcnv3 | |- `' `' R = { <. x , y >. | x R y } |
|
| 4 | 3 | eqeq2i | |- ( R = `' `' R <-> R = { <. x , y >. | x R y } ) |
| 5 | 1 2 4 | 3bitri | |- ( Rel R <-> R = { <. x , y >. | x R y } ) |