| Step | Hyp | Ref | Expression | 
						
							| 1 |  | df-res |  |-  ( A |` B ) = ( A i^i ( B X. _V ) ) | 
						
							| 2 |  | eleq1 |  |-  ( x = <. y , z >. -> ( x e. A <-> <. y , z >. e. A ) ) | 
						
							| 3 |  | vex |  |-  z e. _V | 
						
							| 4 | 3 | biantru |  |-  ( y e. B <-> ( y e. B /\ z e. _V ) ) | 
						
							| 5 |  | vex |  |-  y e. _V | 
						
							| 6 | 5 3 | opelrn |  |-  ( <. y , z >. e. A -> z e. ran A ) | 
						
							| 7 | 6 | biantrud |  |-  ( <. y , z >. e. A -> ( y e. B <-> ( y e. B /\ z e. ran A ) ) ) | 
						
							| 8 | 4 7 | bitr3id |  |-  ( <. y , z >. e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) | 
						
							| 9 | 2 8 | biimtrdi |  |-  ( x = <. y , z >. -> ( x e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) | 
						
							| 10 | 9 | com12 |  |-  ( x e. A -> ( x = <. y , z >. -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) | 
						
							| 11 | 10 | pm5.32d |  |-  ( x e. A -> ( ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) | 
						
							| 12 | 11 | 2exbidv |  |-  ( x e. A -> ( E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) | 
						
							| 13 |  | elxp |  |-  ( x e. ( B X. _V ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) ) | 
						
							| 14 |  | elxp |  |-  ( x e. ( B X. ran A ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) | 
						
							| 15 | 12 13 14 | 3bitr4g |  |-  ( x e. A -> ( x e. ( B X. _V ) <-> x e. ( B X. ran A ) ) ) | 
						
							| 16 | 15 | pm5.32i |  |-  ( ( x e. A /\ x e. ( B X. _V ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) | 
						
							| 17 |  | elin |  |-  ( x e. ( A i^i ( B X. ran A ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) | 
						
							| 18 | 16 17 | bitr4i |  |-  ( ( x e. A /\ x e. ( B X. _V ) ) <-> x e. ( A i^i ( B X. ran A ) ) ) | 
						
							| 19 | 18 | ineqri |  |-  ( A i^i ( B X. _V ) ) = ( A i^i ( B X. ran A ) ) | 
						
							| 20 | 1 19 | eqtri |  |-  ( A |` B ) = ( A i^i ( B X. ran A ) ) |