Step |
Hyp |
Ref |
Expression |
1 |
|
df-res |
|- ( A |` B ) = ( A i^i ( B X. _V ) ) |
2 |
|
eleq1 |
|- ( x = <. y , z >. -> ( x e. A <-> <. y , z >. e. A ) ) |
3 |
|
vex |
|- z e. _V |
4 |
3
|
biantru |
|- ( y e. B <-> ( y e. B /\ z e. _V ) ) |
5 |
|
vex |
|- y e. _V |
6 |
5 3
|
opelrn |
|- ( <. y , z >. e. A -> z e. ran A ) |
7 |
6
|
biantrud |
|- ( <. y , z >. e. A -> ( y e. B <-> ( y e. B /\ z e. ran A ) ) ) |
8 |
4 7
|
bitr3id |
|- ( <. y , z >. e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) |
9 |
2 8
|
syl6bi |
|- ( x = <. y , z >. -> ( x e. A -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) |
10 |
9
|
com12 |
|- ( x e. A -> ( x = <. y , z >. -> ( ( y e. B /\ z e. _V ) <-> ( y e. B /\ z e. ran A ) ) ) ) |
11 |
10
|
pm5.32d |
|- ( x e. A -> ( ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) |
12 |
11
|
2exbidv |
|- ( x e. A -> ( E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) ) |
13 |
|
elxp |
|- ( x e. ( B X. _V ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. _V ) ) ) |
14 |
|
elxp |
|- ( x e. ( B X. ran A ) <-> E. y E. z ( x = <. y , z >. /\ ( y e. B /\ z e. ran A ) ) ) |
15 |
12 13 14
|
3bitr4g |
|- ( x e. A -> ( x e. ( B X. _V ) <-> x e. ( B X. ran A ) ) ) |
16 |
15
|
pm5.32i |
|- ( ( x e. A /\ x e. ( B X. _V ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) |
17 |
|
elin |
|- ( x e. ( A i^i ( B X. ran A ) ) <-> ( x e. A /\ x e. ( B X. ran A ) ) ) |
18 |
16 17
|
bitr4i |
|- ( ( x e. A /\ x e. ( B X. _V ) ) <-> x e. ( A i^i ( B X. ran A ) ) ) |
19 |
18
|
ineqri |
|- ( A i^i ( B X. _V ) ) = ( A i^i ( B X. ran A ) ) |
20 |
1 19
|
eqtri |
|- ( A |` B ) = ( A i^i ( B X. ran A ) ) |