Step |
Hyp |
Ref |
Expression |
1 |
|
dfrnf.1 |
|- F/_ x A |
2 |
|
dfrnf.2 |
|- F/_ y A |
3 |
|
dfrn2 |
|- ran A = { w | E. v v A w } |
4 |
|
nfcv |
|- F/_ x v |
5 |
|
nfcv |
|- F/_ x w |
6 |
4 1 5
|
nfbr |
|- F/ x v A w |
7 |
|
nfv |
|- F/ v x A w |
8 |
|
breq1 |
|- ( v = x -> ( v A w <-> x A w ) ) |
9 |
6 7 8
|
cbvexv1 |
|- ( E. v v A w <-> E. x x A w ) |
10 |
9
|
abbii |
|- { w | E. v v A w } = { w | E. x x A w } |
11 |
|
nfcv |
|- F/_ y x |
12 |
|
nfcv |
|- F/_ y w |
13 |
11 2 12
|
nfbr |
|- F/ y x A w |
14 |
13
|
nfex |
|- F/ y E. x x A w |
15 |
|
nfv |
|- F/ w E. x x A y |
16 |
|
breq2 |
|- ( w = y -> ( x A w <-> x A y ) ) |
17 |
16
|
exbidv |
|- ( w = y -> ( E. x x A w <-> E. x x A y ) ) |
18 |
14 15 17
|
cbvabw |
|- { w | E. x x A w } = { y | E. x x A y } |
19 |
3 10 18
|
3eqtri |
|- ran A = { y | E. x x A y } |