| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ltpnf |
|- ( x e. RR -> x < +oo ) |
| 2 |
1
|
adantr |
|- ( ( x e. RR /\ 0 < x ) -> x < +oo ) |
| 3 |
2
|
pm4.71i |
|- ( ( x e. RR /\ 0 < x ) <-> ( ( x e. RR /\ 0 < x ) /\ x < +oo ) ) |
| 4 |
|
df-3an |
|- ( ( x e. RR /\ 0 < x /\ x < +oo ) <-> ( ( x e. RR /\ 0 < x ) /\ x < +oo ) ) |
| 5 |
3 4
|
bitr4i |
|- ( ( x e. RR /\ 0 < x ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) |
| 6 |
|
elrp |
|- ( x e. RR+ <-> ( x e. RR /\ 0 < x ) ) |
| 7 |
|
0xr |
|- 0 e. RR* |
| 8 |
|
pnfxr |
|- +oo e. RR* |
| 9 |
|
elioo2 |
|- ( ( 0 e. RR* /\ +oo e. RR* ) -> ( x e. ( 0 (,) +oo ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) ) |
| 10 |
7 8 9
|
mp2an |
|- ( x e. ( 0 (,) +oo ) <-> ( x e. RR /\ 0 < x /\ x < +oo ) ) |
| 11 |
5 6 10
|
3bitr4i |
|- ( x e. RR+ <-> x e. ( 0 (,) +oo ) ) |
| 12 |
11
|
eqriv |
|- RR+ = ( 0 (,) +oo ) |