| Step | Hyp | Ref | Expression | 
						
							| 1 |  | sp |  |-  ( A. x x = y -> x = y ) | 
						
							| 2 |  | sbequ2 |  |-  ( x = y -> ( [ y / x ] ph -> ph ) ) | 
						
							| 3 | 2 | sps |  |-  ( A. x x = y -> ( [ y / x ] ph -> ph ) ) | 
						
							| 4 |  | orc |  |-  ( ( x = y /\ ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) | 
						
							| 5 | 1 3 4 | syl6an |  |-  ( A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) | 
						
							| 6 |  | sb4b |  |-  ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) ) | 
						
							| 7 |  | olc |  |-  ( A. x ( x = y -> ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) | 
						
							| 8 | 6 7 | biimtrdi |  |-  ( -. A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) | 
						
							| 9 | 5 8 | pm2.61i |  |-  ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) | 
						
							| 10 |  | sbequ1 |  |-  ( x = y -> ( ph -> [ y / x ] ph ) ) | 
						
							| 11 | 10 | imp |  |-  ( ( x = y /\ ph ) -> [ y / x ] ph ) | 
						
							| 12 |  | sb2 |  |-  ( A. x ( x = y -> ph ) -> [ y / x ] ph ) | 
						
							| 13 | 11 12 | jaoi |  |-  ( ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) -> [ y / x ] ph ) | 
						
							| 14 | 9 13 | impbii |  |-  ( [ y / x ] ph <-> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |