| Step |
Hyp |
Ref |
Expression |
| 1 |
|
sp |
|- ( A. x x = y -> x = y ) |
| 2 |
|
sbequ2 |
|- ( x = y -> ( [ y / x ] ph -> ph ) ) |
| 3 |
2
|
sps |
|- ( A. x x = y -> ( [ y / x ] ph -> ph ) ) |
| 4 |
|
orc |
|- ( ( x = y /\ ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
| 5 |
1 3 4
|
syl6an |
|- ( A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) |
| 6 |
|
sb4b |
|- ( -. A. x x = y -> ( [ y / x ] ph <-> A. x ( x = y -> ph ) ) ) |
| 7 |
|
olc |
|- ( A. x ( x = y -> ph ) -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
| 8 |
6 7
|
biimtrdi |
|- ( -. A. x x = y -> ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) ) |
| 9 |
5 8
|
pm2.61i |
|- ( [ y / x ] ph -> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |
| 10 |
|
sbequ1 |
|- ( x = y -> ( ph -> [ y / x ] ph ) ) |
| 11 |
10
|
imp |
|- ( ( x = y /\ ph ) -> [ y / x ] ph ) |
| 12 |
|
sb2 |
|- ( A. x ( x = y -> ph ) -> [ y / x ] ph ) |
| 13 |
11 12
|
jaoi |
|- ( ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) -> [ y / x ] ph ) |
| 14 |
9 13
|
impbii |
|- ( [ y / x ] ph <-> ( ( x = y /\ ph ) \/ A. x ( x = y -> ph ) ) ) |