Description: Alternate definition of singleton, based on the (alternate) definition of pair. Definition 5.1 of TakeutiZaring p. 15. (Contributed by AV, 12-Jun-2022) (New usage is discouraged.) (Proof modification is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfsn2ALT | |- { A } = { A , A } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oridm | |- ( ( x = A \/ x = A ) <-> x = A ) |
|
2 | 1 | abbii | |- { x | ( x = A \/ x = A ) } = { x | x = A } |
3 | dfpr2 | |- { A , A } = { x | ( x = A \/ x = A ) } |
|
4 | df-sn | |- { A } = { x | x = A } |
|
5 | 2 3 4 | 3eqtr4ri | |- { A } = { A , A } |