Metamath Proof Explorer


Theorem dfss3f

Description: Equivalence for subclass relation, using bound-variable hypotheses instead of distinct variable conditions. (Contributed by NM, 20-Mar-2004)

Ref Expression
Hypotheses dfss2f.1
|- F/_ x A
dfss2f.2
|- F/_ x B
Assertion dfss3f
|- ( A C_ B <-> A. x e. A x e. B )

Proof

Step Hyp Ref Expression
1 dfss2f.1
 |-  F/_ x A
2 dfss2f.2
 |-  F/_ x B
3 1 2 dfss2f
 |-  ( A C_ B <-> A. x ( x e. A -> x e. B ) )
4 df-ral
 |-  ( A. x e. A x e. B <-> A. x ( x e. A -> x e. B ) )
5 3 4 bitr4i
 |-  ( A C_ B <-> A. x e. A x e. B )