Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022)
Ref | Expression | ||
---|---|---|---|
Assertion | dfss7 | |- ( B C_ A <-> { x e. A | x e. B } = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-ss | |- ( B C_ A <-> ( B i^i A ) = B ) |
|
2 | incom | |- ( B i^i A ) = ( A i^i B ) |
|
3 | dfin5 | |- ( A i^i B ) = { x e. A | x e. B } |
|
4 | 2 3 | eqtri | |- ( B i^i A ) = { x e. A | x e. B } |
5 | 4 | eqeq1i | |- ( ( B i^i A ) = B <-> { x e. A | x e. B } = B ) |
6 | 1 5 | bitri | |- ( B C_ A <-> { x e. A | x e. B } = B ) |