Metamath Proof Explorer


Theorem dfss7

Description: Alternate definition of subclass relationship. (Contributed by AV, 1-Aug-2022)

Ref Expression
Assertion dfss7
|- ( B C_ A <-> { x e. A | x e. B } = B )

Proof

Step Hyp Ref Expression
1 df-ss
 |-  ( B C_ A <-> ( B i^i A ) = B )
2 incom
 |-  ( B i^i A ) = ( A i^i B )
3 dfin5
 |-  ( A i^i B ) = { x e. A | x e. B }
4 2 3 eqtri
 |-  ( B i^i A ) = { x e. A | x e. B }
5 4 eqeq1i
 |-  ( ( B i^i A ) = B <-> { x e. A | x e. B } = B )
6 1 5 bitri
 |-  ( B C_ A <-> { x e. A | x e. B } = B )