Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif2 | |- ( A /_\ B ) = { x | ( x e. A \/_ x e. B ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdifxor | |- ( x e. ( A /_\ B ) <-> ( x e. A \/_ x e. B ) ) |
|
| 2 | 1 | eqabi | |- ( A /_\ B ) = { x | ( x e. A \/_ x e. B ) } |