Description: Alternate definition of the symmetric difference. (Contributed by BJ, 30-Apr-2020)
Ref | Expression | ||
---|---|---|---|
Assertion | dfsymdif2 | |- ( A /_\ B ) = { x | ( x e. A \/_ x e. B ) } |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | elsymdifxor | |- ( x e. ( A /_\ B ) <-> ( x e. A \/_ x e. B ) ) |
|
2 | 1 | abbi2i | |- ( A /_\ B ) = { x | ( x e. A \/_ x e. B ) } |