| Step |
Hyp |
Ref |
Expression |
| 1 |
|
difin |
|- ( A \ ( A i^i B ) ) = ( A \ B ) |
| 2 |
|
incom |
|- ( A i^i B ) = ( B i^i A ) |
| 3 |
2
|
difeq2i |
|- ( B \ ( A i^i B ) ) = ( B \ ( B i^i A ) ) |
| 4 |
|
difin |
|- ( B \ ( B i^i A ) ) = ( B \ A ) |
| 5 |
3 4
|
eqtri |
|- ( B \ ( A i^i B ) ) = ( B \ A ) |
| 6 |
1 5
|
uneq12i |
|- ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) = ( ( A \ B ) u. ( B \ A ) ) |
| 7 |
|
difundir |
|- ( ( A u. B ) \ ( A i^i B ) ) = ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) |
| 8 |
|
df-symdif |
|- ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) |
| 9 |
6 7 8
|
3eqtr4ri |
|- ( A /_\ B ) = ( ( A u. B ) \ ( A i^i B ) ) |