| Step | Hyp | Ref | Expression | 
						
							| 1 |  | difin |  |-  ( A \ ( A i^i B ) ) = ( A \ B ) | 
						
							| 2 |  | incom |  |-  ( A i^i B ) = ( B i^i A ) | 
						
							| 3 | 2 | difeq2i |  |-  ( B \ ( A i^i B ) ) = ( B \ ( B i^i A ) ) | 
						
							| 4 |  | difin |  |-  ( B \ ( B i^i A ) ) = ( B \ A ) | 
						
							| 5 | 3 4 | eqtri |  |-  ( B \ ( A i^i B ) ) = ( B \ A ) | 
						
							| 6 | 1 5 | uneq12i |  |-  ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) = ( ( A \ B ) u. ( B \ A ) ) | 
						
							| 7 |  | difundir |  |-  ( ( A u. B ) \ ( A i^i B ) ) = ( ( A \ ( A i^i B ) ) u. ( B \ ( A i^i B ) ) ) | 
						
							| 8 |  | df-symdif |  |-  ( A /_\ B ) = ( ( A \ B ) u. ( B \ A ) ) | 
						
							| 9 | 6 7 8 | 3eqtr4ri |  |-  ( A /_\ B ) = ( ( A u. B ) \ ( A i^i B ) ) |