Description: Alternate definition of the symmetric difference. (Contributed by NM, 17-Aug-2004) (Revised by AV, 17-Aug-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymdif4 | |- ( A /_\ B ) = { x | -. ( x e. A <-> x e. B ) } |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elsymdif | |- ( x e. ( A /_\ B ) <-> -. ( x e. A <-> x e. B ) ) |
|
| 2 | 1 | eqabi | |- ( A /_\ B ) = { x | -. ( x e. A <-> x e. B ) } |