| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-symrel | 
							 |-  ( SymRel R <-> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) )  | 
						
						
							| 2 | 
							
								
							 | 
							dfrel6 | 
							 |-  ( Rel R <-> ( R i^i ( dom R X. ran R ) ) = R )  | 
						
						
							| 3 | 
							
								2
							 | 
							biimpi | 
							 |-  ( Rel R -> ( R i^i ( dom R X. ran R ) ) = R )  | 
						
						
							| 4 | 
							
								3
							 | 
							cnveqd | 
							 |-  ( Rel R -> `' ( R i^i ( dom R X. ran R ) ) = `' R )  | 
						
						
							| 5 | 
							
								4 3
							 | 
							sseq12d | 
							 |-  ( Rel R -> ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) <-> `' R C_ R ) )  | 
						
						
							| 6 | 
							
								5
							 | 
							pm5.32ri | 
							 |-  ( ( `' ( R i^i ( dom R X. ran R ) ) C_ ( R i^i ( dom R X. ran R ) ) /\ Rel R ) <-> ( `' R C_ R /\ Rel R ) )  | 
						
						
							| 7 | 
							
								1 6
							 | 
							bitri | 
							 |-  ( SymRel R <-> ( `' R C_ R /\ Rel R ) )  |