Description: Alternate definition of the symmetric relation predicate. (Contributed by Peter Mazsa, 21-Apr-2019) (Revised by Peter Mazsa, 17-Aug-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrel3 | |- ( SymRel R <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )  | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsymrel2 | |- ( SymRel R <-> ( `' R C_ R /\ Rel R ) )  | 
						|
| 2 | cnvsym | |- ( `' R C_ R <-> A. x A. y ( x R y -> y R x ) )  | 
						|
| 3 | 2 | anbi1i | |- ( ( `' R C_ R /\ Rel R ) <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )  | 
						
| 4 | 1 3 | bitri | |- ( SymRel R <-> ( A. x A. y ( x R y -> y R x ) /\ Rel R ) )  |