| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-symrels | 
							 |-  SymRels = ( Syms i^i Rels )  | 
						
						
							| 2 | 
							
								
							 | 
							df-syms | 
							 |-  Syms = { r | `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) } | 
						
						
							| 3 | 
							
								
							 | 
							inex1g | 
							 |-  ( r e. _V -> ( r i^i ( dom r X. ran r ) ) e. _V )  | 
						
						
							| 4 | 
							
								3
							 | 
							elv | 
							 |-  ( r i^i ( dom r X. ran r ) ) e. _V  | 
						
						
							| 5 | 
							
								
							 | 
							brssr | 
							 |-  ( ( r i^i ( dom r X. ran r ) ) e. _V -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) ) )  | 
						
						
							| 6 | 
							
								4 5
							 | 
							ax-mp | 
							 |-  ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) )  | 
						
						
							| 7 | 
							
								
							 | 
							elrels6 | 
							 |-  ( r e. _V -> ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							elv | 
							 |-  ( r e. Rels <-> ( r i^i ( dom r X. ran r ) ) = r )  | 
						
						
							| 9 | 
							
								8
							 | 
							biimpi | 
							 |-  ( r e. Rels -> ( r i^i ( dom r X. ran r ) ) = r )  | 
						
						
							| 10 | 
							
								9
							 | 
							cnveqd | 
							 |-  ( r e. Rels -> `' ( r i^i ( dom r X. ran r ) ) = `' r )  | 
						
						
							| 11 | 
							
								10 9
							 | 
							sseq12d | 
							 |-  ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) C_ ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) )  | 
						
						
							| 12 | 
							
								6 11
							 | 
							bitrid | 
							 |-  ( r e. Rels -> ( `' ( r i^i ( dom r X. ran r ) ) _S ( r i^i ( dom r X. ran r ) ) <-> `' r C_ r ) )  | 
						
						
							| 13 | 
							
								1 2 12
							 | 
							abeqinbi | 
							 |-  SymRels = { r e. Rels | `' r C_ r } |