Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrels4 | |- SymRels = { r e. Rels | `' r = r } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsymrels2 |  |-  SymRels = { r e. Rels | `' r C_ r } | 
						|
| 2 | elrelscnveq | |- ( r e. Rels -> ( `' r C_ r <-> `' r = r ) )  | 
						|
| 3 | 1 2 | rabimbieq |  |-  SymRels = { r e. Rels | `' r = r } |