Description: Alternate definition of the class of symmetric relations. (Contributed by Peter Mazsa, 22-Jul-2021)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfsymrels5 | |- SymRels = { r e. Rels | A. x A. y ( x r y <-> y r x ) } | 
				
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | dfsymrels4 |  |-  SymRels = { r e. Rels | `' r = r } | 
						|
| 2 | elrelscnveq2 | |- ( r e. Rels -> ( `' r = r <-> A. x A. y ( x r y <-> y r x ) ) )  | 
						|
| 3 | 1 2 | rabimbieq |  |-  SymRels = { r e. Rels | A. x A. y ( x r y <-> y r x ) } |