Metamath Proof Explorer


Theorem dftermc3

Description: Alternate definition of TermCat . See also df-termc , dftermc2 . (Contributed by Zhi Wang, 20-Oct-2025)

Ref Expression
Assertion dftermc3
|- TermCat = { c | ( Arrow ` c ) ~~ 1o }

Proof

Step Hyp Ref Expression
1 termcarweu
 |-  ( c e. TermCat -> E! a a e. ( Arrow ` c ) )
2 arweutermc
 |-  ( E! a a e. ( Arrow ` c ) -> c e. TermCat )
3 1 2 impbii
 |-  ( c e. TermCat <-> E! a a e. ( Arrow ` c ) )
4 euen1b
 |-  ( ( Arrow ` c ) ~~ 1o <-> E! a a e. ( Arrow ` c ) )
5 3 4 bitr4i
 |-  ( c e. TermCat <-> ( Arrow ` c ) ~~ 1o )
6 5 eqabi
 |-  TermCat = { c | ( Arrow ` c ) ~~ 1o }