Metamath Proof Explorer


Theorem dftp2

Description: Alternate definition of unordered triple of classes. Special case of Definition 5.3 of TakeutiZaring p. 16. (Contributed by NM, 8-Apr-1994)

Ref Expression
Assertion dftp2
|- { A , B , C } = { x | ( x = A \/ x = B \/ x = C ) }

Proof

Step Hyp Ref Expression
1 vex
 |-  x e. _V
2 1 eltp
 |-  ( x e. { A , B , C } <-> ( x = A \/ x = B \/ x = C ) )
3 2 abbi2i
 |-  { A , B , C } = { x | ( x = A \/ x = B \/ x = C ) }