| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ssintab |
|- ( t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } <-> A. z ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) ) |
| 2 |
|
ttrclss |
|- ( ( R C_ z /\ ( z o. z ) C_ z ) -> t++ R C_ z ) |
| 3 |
1 2
|
mpgbir |
|- t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
| 4 |
3
|
a1i |
|- ( ( R e. V /\ Rel R ) -> t++ R C_ |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |
| 5 |
|
rabab |
|- { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
| 6 |
5
|
inteqi |
|- |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } |
| 7 |
|
ttrclexg |
|- ( R e. V -> t++ R e. _V ) |
| 8 |
|
ssttrcl |
|- ( Rel R -> R C_ t++ R ) |
| 9 |
|
ttrcltr |
|- ( t++ R o. t++ R ) C_ t++ R |
| 10 |
8 9
|
jctir |
|- ( Rel R -> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) |
| 11 |
|
sseq2 |
|- ( z = t++ R -> ( R C_ z <-> R C_ t++ R ) ) |
| 12 |
|
coeq1 |
|- ( z = t++ R -> ( z o. z ) = ( t++ R o. z ) ) |
| 13 |
|
coeq2 |
|- ( z = t++ R -> ( t++ R o. z ) = ( t++ R o. t++ R ) ) |
| 14 |
12 13
|
eqtrd |
|- ( z = t++ R -> ( z o. z ) = ( t++ R o. t++ R ) ) |
| 15 |
|
id |
|- ( z = t++ R -> z = t++ R ) |
| 16 |
14 15
|
sseq12d |
|- ( z = t++ R -> ( ( z o. z ) C_ z <-> ( t++ R o. t++ R ) C_ t++ R ) ) |
| 17 |
11 16
|
anbi12d |
|- ( z = t++ R -> ( ( R C_ z /\ ( z o. z ) C_ z ) <-> ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) ) |
| 18 |
17
|
intminss |
|- ( ( t++ R e. _V /\ ( R C_ t++ R /\ ( t++ R o. t++ R ) C_ t++ R ) ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 19 |
7 10 18
|
syl2an |
|- ( ( R e. V /\ Rel R ) -> |^| { z e. _V | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 20 |
6 19
|
eqsstrrid |
|- ( ( R e. V /\ Rel R ) -> |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } C_ t++ R ) |
| 21 |
4 20
|
eqssd |
|- ( ( R e. V /\ Rel R ) -> t++ R = |^| { z | ( R C_ z /\ ( z o. z ) C_ z ) } ) |