Metamath Proof Explorer


Theorem dfun3

Description: Union defined in terms of intersection (De Morgan's law). Definition of union in Mendelson p. 231. (Contributed by NM, 8-Jan-2002)

Ref Expression
Assertion dfun3
|- ( A u. B ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) )

Proof

Step Hyp Ref Expression
1 dfun2
 |-  ( A u. B ) = ( _V \ ( ( _V \ A ) \ B ) )
2 dfin2
 |-  ( ( _V \ A ) i^i ( _V \ B ) ) = ( ( _V \ A ) \ ( _V \ ( _V \ B ) ) )
3 ddif
 |-  ( _V \ ( _V \ B ) ) = B
4 3 difeq2i
 |-  ( ( _V \ A ) \ ( _V \ ( _V \ B ) ) ) = ( ( _V \ A ) \ B )
5 2 4 eqtr2i
 |-  ( ( _V \ A ) \ B ) = ( ( _V \ A ) i^i ( _V \ B ) )
6 5 difeq2i
 |-  ( _V \ ( ( _V \ A ) \ B ) ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) )
7 1 6 eqtri
 |-  ( A u. B ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) )