Description: Union defined in terms of intersection (De Morgan's law). Definition of union in Mendelson p. 231. (Contributed by NM, 8-Jan-2002)
Ref | Expression | ||
---|---|---|---|
Assertion | dfun3 | |- ( A u. B ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfun2 | |- ( A u. B ) = ( _V \ ( ( _V \ A ) \ B ) ) |
|
2 | dfin2 | |- ( ( _V \ A ) i^i ( _V \ B ) ) = ( ( _V \ A ) \ ( _V \ ( _V \ B ) ) ) |
|
3 | ddif | |- ( _V \ ( _V \ B ) ) = B |
|
4 | 3 | difeq2i | |- ( ( _V \ A ) \ ( _V \ ( _V \ B ) ) ) = ( ( _V \ A ) \ B ) |
5 | 2 4 | eqtr2i | |- ( ( _V \ A ) \ B ) = ( ( _V \ A ) i^i ( _V \ B ) ) |
6 | 5 | difeq2i | |- ( _V \ ( ( _V \ A ) \ B ) ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) ) |
7 | 1 6 | eqtri | |- ( A u. B ) = ( _V \ ( ( _V \ A ) i^i ( _V \ B ) ) ) |