Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | dfur2.b | |- B = ( Base ` R ) |
|
dfur2.t | |- .x. = ( .r ` R ) |
||
dfur2.u | |- .1. = ( 1r ` R ) |
||
Assertion | dfur2 | |- .1. = ( iota e ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | dfur2.b | |- B = ( Base ` R ) |
|
2 | dfur2.t | |- .x. = ( .r ` R ) |
|
3 | dfur2.u | |- .1. = ( 1r ` R ) |
|
4 | eqid | |- ( mulGrp ` R ) = ( mulGrp ` R ) |
|
5 | 4 1 | mgpbas | |- B = ( Base ` ( mulGrp ` R ) ) |
6 | 4 2 | mgpplusg | |- .x. = ( +g ` ( mulGrp ` R ) ) |
7 | 4 3 | ringidval | |- .1. = ( 0g ` ( mulGrp ` R ) ) |
8 | 5 6 7 | grpidval | |- .1. = ( iota e ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) ) |