Metamath Proof Explorer


Theorem dfur2

Description: The multiplicative identity is the unique element of the ring that is left- and right-neutral on all elements under multiplication. (Contributed by Mario Carneiro, 10-Jan-2015)

Ref Expression
Hypotheses dfur2.b
|- B = ( Base ` R )
dfur2.t
|- .x. = ( .r ` R )
dfur2.u
|- .1. = ( 1r ` R )
Assertion dfur2
|- .1. = ( iota e ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) )

Proof

Step Hyp Ref Expression
1 dfur2.b
 |-  B = ( Base ` R )
2 dfur2.t
 |-  .x. = ( .r ` R )
3 dfur2.u
 |-  .1. = ( 1r ` R )
4 eqid
 |-  ( mulGrp ` R ) = ( mulGrp ` R )
5 4 1 mgpbas
 |-  B = ( Base ` ( mulGrp ` R ) )
6 4 2 mgpplusg
 |-  .x. = ( +g ` ( mulGrp ` R ) )
7 4 3 ringidval
 |-  .1. = ( 0g ` ( mulGrp ` R ) )
8 5 6 7 grpidval
 |-  .1. = ( iota e ( e e. B /\ A. x e. B ( ( e .x. x ) = x /\ ( x .x. e ) = x ) ) )