Metamath Proof Explorer


Theorem dfvd2

Description: Definition of a 2-hypothesis virtual deduction. (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfvd2
|- ( (. ph ,. ps ->. ch ). <-> ( ph -> ( ps -> ch ) ) )

Proof

Step Hyp Ref Expression
1 df-vd2
 |-  ( (. ph ,. ps ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )
2 impexp
 |-  ( ( ( ph /\ ps ) -> ch ) <-> ( ph -> ( ps -> ch ) ) )
3 1 2 bitri
 |-  ( (. ph ,. ps ->. ch ). <-> ( ph -> ( ps -> ch ) ) )