Metamath Proof Explorer


Theorem dfvd2an

Description: Definition of a 2-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfvd2an
|- ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )

Proof

Step Hyp Ref Expression
1 df-vd1
 |-  ( (. (. ph ,. ps ). ->. ch ). <-> ( (. ph ,. ps ). -> ch ) )
2 df-vhc2
 |-  ( (. ph ,. ps ). <-> ( ph /\ ps ) )
3 2 imbi1i
 |-  ( ( (. ph ,. ps ). -> ch ) <-> ( ( ph /\ ps ) -> ch ) )
4 1 3 bitri
 |-  ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )