Description: Definition of a 2-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
Ref | Expression | ||
---|---|---|---|
Assertion | dfvd2an | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | df-vd1 | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( (. ph ,. ps ). -> ch ) ) |
|
2 | df-vhc2 | |- ( (. ph ,. ps ). <-> ( ph /\ ps ) ) |
|
3 | 2 | imbi1i | |- ( ( (. ph ,. ps ). -> ch ) <-> ( ( ph /\ ps ) -> ch ) ) |
4 | 1 3 | bitri | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) ) |