Description: Definition of a 2-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dfvd2an | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-vd1 | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( (. ph ,. ps ). -> ch ) ) |
|
| 2 | df-vhc2 | |- ( (. ph ,. ps ). <-> ( ph /\ ps ) ) |
|
| 3 | 2 | imbi1i | |- ( ( (. ph ,. ps ). -> ch ) <-> ( ( ph /\ ps ) -> ch ) ) |
| 4 | 1 3 | bitri | |- ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) ) |