Metamath Proof Explorer


Theorem dfvd2ani

Description: Inference form of dfvd2an . (Contributed by Alan Sare, 23-Apr-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2ani.1
|- (. (. ph ,. ps ). ->. ch ).
Assertion dfvd2ani
|- ( ( ph /\ ps ) -> ch )

Proof

Step Hyp Ref Expression
1 dfvd2ani.1
 |-  (. (. ph ,. ps ). ->. ch ).
2 dfvd2an
 |-  ( (. (. ph ,. ps ). ->. ch ). <-> ( ( ph /\ ps ) -> ch ) )
3 1 2 mpbi
 |-  ( ( ph /\ ps ) -> ch )