Metamath Proof Explorer


Theorem dfvd2i

Description: Inference form of dfvd2 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd2i.1
|- (. ph ,. ps ->. ch ).
Assertion dfvd2i
|- ( ph -> ( ps -> ch ) )

Proof

Step Hyp Ref Expression
1 dfvd2i.1
 |-  (. ph ,. ps ->. ch ).
2 dfvd2
 |-  ( (. ph ,. ps ->. ch ). <-> ( ph -> ( ps -> ch ) ) )
3 1 2 mpbi
 |-  ( ph -> ( ps -> ch ) )