Step |
Hyp |
Ref |
Expression |
1 |
|
df-vd3 |
|- ( (. ph ,. ps ,. ch ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) ) |
2 |
|
df-3an |
|- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
3 |
2
|
imbi1i |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) |
4 |
|
impexp |
|- ( ( ( ( ph /\ ps ) /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
5 |
3 4
|
bitri |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
6 |
|
impexp |
|- ( ( ( ph /\ ps ) -> ( ch -> th ) ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
7 |
5 6
|
bitri |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
8 |
1 7
|
bitri |
|- ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |