| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-vd3 |
|- ( (. ph ,. ps ,. ch ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) ) |
| 2 |
|
df-3an |
|- ( ( ph /\ ps /\ ch ) <-> ( ( ph /\ ps ) /\ ch ) ) |
| 3 |
2
|
imbi1i |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ( ph /\ ps ) /\ ch ) -> th ) ) |
| 4 |
|
impexp |
|- ( ( ( ( ph /\ ps ) /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
| 5 |
3 4
|
bitri |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ( ph /\ ps ) -> ( ch -> th ) ) ) |
| 6 |
|
impexp |
|- ( ( ( ph /\ ps ) -> ( ch -> th ) ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| 7 |
5 6
|
bitri |
|- ( ( ( ph /\ ps /\ ch ) -> th ) <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |
| 8 |
1 7
|
bitri |
|- ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) ) |