Metamath Proof Explorer


Theorem dfvd3an

Description: Definition of a 3-hypothesis virtual deduction in vd conjunction form. (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Assertion dfvd3an
|- ( (. (. ph ,. ps ,. ch ). ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) )

Proof

Step Hyp Ref Expression
1 df-vd1
 |-  ( (. (. ph ,. ps ,. ch ). ->. th ). <-> ( (. ph ,. ps ,. ch ). -> th ) )
2 df-vhc3
 |-  ( (. ph ,. ps ,. ch ). <-> ( ph /\ ps /\ ch ) )
3 2 imbi1i
 |-  ( ( (. ph ,. ps ,. ch ). -> th ) <-> ( ( ph /\ ps /\ ch ) -> th ) )
4 1 3 bitri
 |-  ( (. (. ph ,. ps ,. ch ). ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) )