Metamath Proof Explorer


Theorem dfvd3ani

Description: Inference form of dfvd3an . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3ani.1
|- (. (. ph ,. ps ,. ch ). ->. th ).
Assertion dfvd3ani
|- ( ( ph /\ ps /\ ch ) -> th )

Proof

Step Hyp Ref Expression
1 dfvd3ani.1
 |-  (. (. ph ,. ps ,. ch ). ->. th ).
2 dfvd3an
 |-  ( (. (. ph ,. ps ,. ch ). ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) )
3 1 2 mpbi
 |-  ( ( ph /\ ps /\ ch ) -> th )