Metamath Proof Explorer


Theorem dfvd3anir

Description: Right-to-left inference form of dfvd3an . (Contributed by Alan Sare, 13-Jun-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3anir.1
|- ( ( ph /\ ps /\ ch ) -> th )
Assertion dfvd3anir
|- (. (. ph ,. ps ,. ch ). ->. th ).

Proof

Step Hyp Ref Expression
1 dfvd3anir.1
 |-  ( ( ph /\ ps /\ ch ) -> th )
2 dfvd3an
 |-  ( (. (. ph ,. ps ,. ch ). ->. th ). <-> ( ( ph /\ ps /\ ch ) -> th ) )
3 1 2 mpbir
 |-  (. (. ph ,. ps ,. ch ). ->. th ).