Metamath Proof Explorer


Theorem dfvd3i

Description: Inference form of dfvd3 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3i.1
|- (. ph ,. ps ,. ch ->. th ).
Assertion dfvd3i
|- ( ph -> ( ps -> ( ch -> th ) ) )

Proof

Step Hyp Ref Expression
1 dfvd3i.1
 |-  (. ph ,. ps ,. ch ->. th ).
2 dfvd3
 |-  ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) )
3 1 2 mpbi
 |-  ( ph -> ( ps -> ( ch -> th ) ) )