Metamath Proof Explorer


Theorem dfvd3ir

Description: Right-to-left inference form of dfvd3 . (Contributed by Alan Sare, 14-Nov-2011) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypothesis dfvd3ir.1
|- ( ph -> ( ps -> ( ch -> th ) ) )
Assertion dfvd3ir
|- (. ph ,. ps ,. ch ->. th ).

Proof

Step Hyp Ref Expression
1 dfvd3ir.1
 |-  ( ph -> ( ps -> ( ch -> th ) ) )
2 dfvd3
 |-  ( (. ph ,. ps ,. ch ->. th ). <-> ( ph -> ( ps -> ( ch -> th ) ) ) )
3 1 2 mpbir
 |-  (. ph ,. ps ,. ch ->. th ).