Step |
Hyp |
Ref |
Expression |
1 |
|
elz2 |
|- ( x e. ZZ <-> E. y e. NN E. z e. NN x = ( y - z ) ) |
2 |
|
subf |
|- - : ( CC X. CC ) --> CC |
3 |
|
ffn |
|- ( - : ( CC X. CC ) --> CC -> - Fn ( CC X. CC ) ) |
4 |
2 3
|
ax-mp |
|- - Fn ( CC X. CC ) |
5 |
|
nnsscn |
|- NN C_ CC |
6 |
|
xpss12 |
|- ( ( NN C_ CC /\ NN C_ CC ) -> ( NN X. NN ) C_ ( CC X. CC ) ) |
7 |
5 5 6
|
mp2an |
|- ( NN X. NN ) C_ ( CC X. CC ) |
8 |
|
ovelimab |
|- ( ( - Fn ( CC X. CC ) /\ ( NN X. NN ) C_ ( CC X. CC ) ) -> ( x e. ( - " ( NN X. NN ) ) <-> E. y e. NN E. z e. NN x = ( y - z ) ) ) |
9 |
4 7 8
|
mp2an |
|- ( x e. ( - " ( NN X. NN ) ) <-> E. y e. NN E. z e. NN x = ( y - z ) ) |
10 |
1 9
|
bitr4i |
|- ( x e. ZZ <-> x e. ( - " ( NN X. NN ) ) ) |
11 |
10
|
eqriv |
|- ZZ = ( - " ( NN X. NN ) ) |