Description: The degree of a monomial. (Contributed by Mario Carneiro, 26-Jul-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | coe1term.1 | |- F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) |
|
Assertion | dgr1term | |- ( ( A e. CC /\ A =/= 0 /\ N e. NN0 ) -> ( deg ` F ) = N ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | coe1term.1 | |- F = ( z e. CC |-> ( A x. ( z ^ N ) ) ) |
|
2 | 1 | coe1termlem | |- ( ( A e. CC /\ N e. NN0 ) -> ( ( coeff ` F ) = ( n e. NN0 |-> if ( n = N , A , 0 ) ) /\ ( A =/= 0 -> ( deg ` F ) = N ) ) ) |
3 | 2 | simprd | |- ( ( A e. CC /\ N e. NN0 ) -> ( A =/= 0 -> ( deg ` F ) = N ) ) |
4 | 3 | 3impia | |- ( ( A e. CC /\ N e. NN0 /\ A =/= 0 ) -> ( deg ` F ) = N ) |
5 | 4 | 3com23 | |- ( ( A e. CC /\ A =/= 0 /\ N e. NN0 ) -> ( deg ` F ) = N ) |